By Manas A. Pathak

This thesis discusses the privateness matters in speech-based functions resembling biometric authentication, surveillance, and exterior speech processing prone. writer Manas A. Pathak offers recommendations for privacy-preserving speech processing functions reminiscent of speaker verification, speaker id and speech popularity. the writer additionally introduces a few of the instruments from cryptography and computer studying and present recommendations for making improvements to the potency and scalability of the provided strategies. Experiments with prototype implementations of the suggestions for execution time and accuracy on standardized speech datasets also are integrated within the textual content. utilizing the framework proposed may possibly now ensure that a surveillance organization to pay attention for a recognized terrorist with out having the ability to listen dialog from non-targeted, blameless civilians.

Show description

Read Online or Download Privacy-Preserving Machine Learning for Speech Processing PDF

Best Technology books

Build Your Own Electric Vehicle

Cross Green-Go electrical! quicker, more cost-effective, extra trustworthy whereas Saving power and the surroundings “Empowering individuals with the instruments to transform their very own cars presents an instantaneous direction clear of petroleum dependence and will join the ideas portfolio. ” – Chelsea Sexton, Co-founder, Plug In the USA and featured in Who Killed the electrical automobile?

The Digital Doctor: Hope, Hype, and Harm at the Dawn of Medicine's Computer Age

The recent York occasions technology Bestseller from Robert Wachter, glossy Healthcare’s number 1 such a lot Influential Physician-Executive within the US whereas sleek drugs produces miracles, it additionally can provide care that's too frequently damaging, unreliable, unsatisfying, and impossibly pricey. For the prior few a long time, know-how has been touted because the treatment for all of healthcare’s ills.

Business Driven Information Systems

Enterprise pushed tasks first; know-how moment company pushed info platforms discusses quite a few enterprise tasks first and the way know-how helps these projects moment. the basis for this new angle is that company tasks should still force expertise offerings. each dialogue first addresses the company wishes after which addresses the expertise that helps these wishes.

Semiconductor Physics And Devices: Basic Principles

With its robust pedagogy, enhanced clarity, and thorough exam of the physics of semiconductor fabric, Semiconductor Physics and units, 4/e presents a foundation for figuring out the features, operation, and obstacles of semiconductor units. Neamen's Semiconductor Physics and units bargains with houses and features of semiconductor fabrics and units.

Additional resources for Privacy-Preserving Machine Learning for Speech Processing

Show sample text content

Three. 1 what's privateness? . . . . . . . . . . . . . . . . . . . . . . . . . . three. 1. 1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . three. 1. 2 comparable ideas . . . . . . . . . . . . . . . . . . . . . three. 1. three Privacy-Preserving functions. . . . . . . . . . . three. 1. four Privacy-Preserving Computation during this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 19 20 21 22 xi xii Contents three. 2 safe Multiparty Computation . . . . . . . . . . . . . . . . . . three. 2. 1 Protocol Assumptions . . . . . . . . . . . . . . . . . . . . three. 2. 2 hostile habit . . . . . . . . . . . . . . . . . . . . three. 2. three privateness Definitions: excellent version and actual version three. 2. four Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . three. 2. five covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . three. 2. 6 Zero-Knowledge Proofs and Threshold Cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . three. 2. 7 Oblivious move . . . . . . . . . . . . . . . . . . . . . . three. 2. eight similar paintings on SMC Protocols for desktop studying . . . . . . . . . . . . . . . . . . . . three. three Differential privateness . . . . . . . . . . . . . . . . . . . . . . . . . . three. three. 1 Exponential Mechanism . . . . . . . . . . . . . . . . . . three. three. 2 comparable paintings on Differentially inner most computing device studying . . . . . . . . . . . . . . . . . . . . . . three. three. three Differentially deepest Speech Processing . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . half II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 24 25 26 27 33 ..... ..... 35 37 ..... ..... ..... 39 39 forty-one ..... ..... ..... forty two forty two forty three Privacy-Preserving Speaker Verification four evaluate of Speaker Verification with privateness . . . . . . . . four. 1 advent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 2 privateness concerns and hostile habit . . . . . . . . . . . four. 2. 1 Imposter Imitating a person . . . . . . . . . . . . . . . . four. 2. 2 Collusion . . . . . . . . . . . . . . . . . . . . . . . . . . . four. 2. three info Leakage After a number of Interactions References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . forty nine forty nine 50 fifty one fifty two fifty two fifty three five Privacy-Preserving Speaker Verification mix versions . . . . . . . . . . . . . . . . . . five. 1 approach structure . . . . . . . . . . . . five. 2 Speaker Verification Protocols . . . . . five. 2. 1 deepest Enrollment Protocol . five. 2. 2 inner most Verification Protocols five. three Experiments. . . . . . . . . . . . . . . . . . five. three. 1 Precision . . . . . . . . . . . . . . . five. three. 2 Accuracy . . . . . . . . . . . . . . five. three. three Execution Time . . . . . . . . . . five. four end . . . . . . . . . . . . . . . . . . five. five Supplementary Protocols . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fifty five fifty five fifty seven fifty eight fifty eight 60 sixty one sixty one sixty one sixty two sixty three sixty six utilizing Gaussian ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. Contents 6 Privacy-Preserving Speaker Verification as String comparability . . . . . . . . . . . . . . 6. 1 method structure . . . . . . . . . . . . 6. 2 Protocols . . . . . . . . . . . . . . . . . . . . 6. three Experiments. . . . . . . . . . . . . . . . . . 6. three. 1 Accuracy . . . . . . . . . . . . . . 6. three. 2 Execution Time . . . . . . . . . . 6. four end . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . half III 7 eight nine xiii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sixty seven sixty eight sixty nine 70 70 seventy one seventy two seventy two ...... ...... ...... seventy five seventy five seventy five . . . . Privacy-Preserving Speaker identity assessment of Speaker identity with privateness .

Rated 4.06 of 5 – based on 3 votes